References

Scientific references

R1

Marsha Berger and Isidore Rigoutsos. An Algorithm for Point Clustering and Grid Generation. IEEE Transactions on Systems, Man and Cybernetics, 1991. doi:10.1109/21.120081.

R2

A Bourdon, V P Pasko, N Y Liu, S Célestin, P Ségur, and E Marode. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Sources Science and Technology, 16(3):656–678, aug 2007. URL: http://stacks.iop.org/0963-0252/16/i=3/a=026?key=crossref.26470bbe9c1f765777a162c80aa57bb7, doi:10.1088/0963-0252/16/3/026.

R3

Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics, 2006. doi:10.1063/1.2159468.

R4

O. Chanrion and T. Neubert. A PIC-MCC code for simulation of streamer propagation in air. Journal of Computational Physics, 2008. doi:10.1016/j.jcp.2008.04.016.

R5

P Colella, D T Graves, T J Ligocki, G Miller, D Modiano, P O Schwartz, B Van Straalen, J Pilliod, D Trebotich, M Barad, B Keen, A Nonaka, and C Shen. EBChombo software package for cartesian grid, embedded boundary applications. Technical Report, Lawrence Berkeley National Laboratory, 2004.

R6

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81:2340–2361, 1977. doi:10.1021/j100540a008.

R7

Brian T.N. Gunney and Robert W. Anderson. Advances in patch-based adaptive mesh refinement scalability. Journal of Parallel and Distributed Computing, 2016. doi:10.1016/j.jpdc.2015.11.005.

R8

Edward W. Larsen, Guido Thömmes, Axel Klar, Seaid Mohammed, and Thomas Götz. Simplified PN Approximations to the Equations of Radiative Heat Transfer and Applications. Journal of Computational Physics, 183(2):652–675, dec 2002. URL: https://www.sciencedirect.com/science/article/pii/S0021999102972104, doi:10.1006/JCPH.2002.7210.

R9

V R Soloviev and V M Krivtsov. Surface barrier discharge modelling for aerodynamic applications. Journal of Physics D: Applied Physics, 42(12):125208, jun 2009. URL: http://stacks.iop.org/0022-3727/42/i=12/a=125208?key=crossref.6a72c0ae60b829dd552a56b7f9dfa90c, doi:10.1088/0022-3727/42/12/125208.

R10

David Trebotich and Daniel Graves. An adaptive finite volume method for the incompressible Navier–Stokes equations in complex geometries. Commun. Appl. Math. Comput. Sci., 10(1):43–82, 2015. URL: https://doi.org/10.2140/camcos.2015.10.43, doi:10.2140/camcos.2015.10.43.

Publications using chombo-discharge

P1

R Marskar and H K H Meyer. A kinetic monte carlo study of positive streamer interaction with complex dielectric surfaces. Plasma Sources Science and Technology, 32(8):085010, aug 2023. URL: https://dx.doi.org/10.1088/1361-6595/acec0b, doi:10.1088/1361-6595/acec0b.

P2

Robert Marskar. Adaptive multiscale methods for 3d streamer discharges in air. Plasma Research Express, 1:015011, 1 2019. URL: http://stacks.iop.org/2516-1067/1/i=1/a=015011?key=crossref.40abb8d43302d498d8bd122b20e9ad97, doi:10.1088/2516-1067/aafc7b.

P3

Robert Marskar. An adaptive cartesian embedded boundary approach for fluid simulations of two- and three-dimensional low temperature plasma filaments in complex geometries. Journal of Computational Physics, 388:624–654, 2019. doi:10.1016/j.jcp.2019.03.036.

P4

Robert Marskar. 3d fluid modeling of positive streamer discharges in air with stochastic photoionization. Plasma Sources Science and Technology, 4 2020. URL: https://iopscience.iop.org/article/10.1088/1361-6595/ab87b6, doi:10.1088/1361-6595/ab87b6.

P5

Robert Marskar. chombo-discharge: An AMR code for gas discharge simulations in complex geometries. Journal of Open Source Software, 8(85):5335, May 2023. URL: https://joss.theoj.org/papers/10.21105/joss.05335, doi:10.21105/joss.05335.

P6

H K H Meyer, R Marskar, H Gjemdal, and F Mauseth. Streamer propagation along a profiled dielectric surface. Plasma Sources Science and Technology, 29:115015, 11 2020. URL: https://iopscience.iop.org/article/10.1088/1361-6595/abbae2, doi:10.1088/1361-6595/abbae2.

P7

H K H Meyer, R Marskar, and F Mauseth. Evolution of positive streamers in air over non-planar dielectrics: experiments and simulations. Plasma Sources Science and Technology, 31:114006, 11 2022. URL: https://iopscience.iop.org/article/10.1088/1361-6595/aca0be, doi:10.1088/1361-6595/aca0be.

P8

Hans Kristian Meyer, Frank Mauseth, Robert Marskar, Atle Pedersen, and Andreas Blaszczyk. Streamer and surface charge dynamics in non-uniform air gaps with a dielectric barrier. IEEE Transactions on Dielectrics and Electrical Insulation, 26:1163–1171, 8 2019. doi:10.1109/TDEI.2019.007929.