References

R1

Marsha Berger and Isidore Rigoutsos. An Algorithm for Point Clustering and Grid Generation. IEEE Transactions on Systems, Man and Cybernetics, 1991. doi:10.1109/21.120081.

R2

A Bourdon, V P Pasko, N Y Liu, S Célestin, P Ségur, and E Marode. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations. Plasma Sources Science and Technology, 16(3):656–678, aug 2007. URL: http://stacks.iop.org/0963-0252/16/i=3/a=026?key=crossref.26470bbe9c1f765777a162c80aa57bb7, doi:10.1088/0963-0252/16/3/026.

R3

Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics, 2006. doi:10.1063/1.2159468.

R4

O. Chanrion and T. Neubert. A PIC-MCC code for simulation of streamer propagation in air. Journal of Computational Physics, 2008. doi:10.1016/j.jcp.2008.04.016.

R5

P Colella, D T Graves, T J Ligocki, G Miller, D Modiano, P O Schwartz, B Van Straalen, J Pilliod, D Trebotich, M Barad, B Keen, A Nonaka, and C Shen. EBChombo software package for cartesian grid, embedded boundary applications. Technical Report, Lawrence Berkeley National Laboratory, 2004.

R6

Daniel T. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81:2340–2361, 1977. doi:10.1021/j100540a008.

R7

Brian T.N. Gunney and Robert W. Anderson. Advances in patch-based adaptive mesh refinement scalability. Journal of Parallel and Distributed Computing, 2016. doi:10.1016/j.jpdc.2015.11.005.

R8

Edward W. Larsen, Guido Thömmes, Axel Klar, Seaid Mohammed, and Thomas Götz. Simplified PN Approximations to the Equations of Radiative Heat Transfer and Applications. Journal of Computational Physics, 183(2):652–675, dec 2002. URL: https://www.sciencedirect.com/science/article/pii/S0021999102972104, doi:10.1006/JCPH.2002.7210.

R9

V R Soloviev and V M Krivtsov. Surface barrier discharge modelling for aerodynamic applications. Journal of Physics D: Applied Physics, 42(12):125208, jun 2009. URL: http://stacks.iop.org/0022-3727/42/i=12/a=125208?key=crossref.6a72c0ae60b829dd552a56b7f9dfa90c, doi:10.1088/0022-3727/42/12/125208.

R10

David Trebotich and Daniel Graves. An adaptive finite volume method for the incompressible Navier–Stokes equations in complex geometries. Commun. Appl. Math. Comput. Sci., 10(1):43–82, 2015. URL: https://doi.org/10.2140/camcos.2015.10.43, doi:10.2140/camcos.2015.10.43.